
Acta Cryst. (1992). B48, 245-252 

Molecular-Distortion Analysis with Cartesian Symmetry Coordinates 

BY ROBERTO CAMMI AND ENRICO CAVALLI 

Istituto di Chimica Fisica, Universitd di Parma, Viale delle Scienze, 1-43100 Parma, Italy 

(Received 10 June 1991; accepted 3 December 1991) 

245 

Abstract 

A general method for the analysis of molecular 
distortion using Cartesian symmetry coordinates is 
proposed. The method is characterized by explicit 
definition of the spatial disposition of the reference 
structure and by the use of 3N-6 (5 )  symmetry 
coordinates which represent real modifications of the 
molecular structure, thus avoiding problems of 
redundancy. The method is applied to ML4 (Td) and 
ML6 (Oh) type molecules. 

1. Introduction 

Group theory has only in recent years been applied 
to the analysis and description of molecular distor- 
tions. It is particular relevance to the study of solid- 
state matter, where one frequently encounters 
molecular systems which show structural deviations 
from a geometrical configuration of higher symmetry 
(Baur, 1974). 

Of particular interest is the method of analysis 
proposed by Murray-Rust, Bfirgi & Dunitz (1978a,b, 
1979), where molecular distortion is described in 
terms of symmetry coordinates relative to a reference 
structure which is of higher symmetry. The main 
advantage of this method lies in the fact that each of 
the terms represents a partial distortion retaining 
some of the symmetry elements of the reference 
configuration. Furthermore, with this procedure we 
can define the concept of approximate symmetry in a 
quantitative way. 

It is known that symmetry coordinates can be 
expessed in terms of internal parameters, i.e. bond 
distances and angles, or in terms of atomic Cartesian 
displacements. The Murray-Rust procedure uses 
symmetry coordinates which are related to the inter- 
nal parameters. In this paper we propose a general 
method of molecular-distortion analysis which is 
based on Cartesian symmetry coordinates. This 
model applies Eckart's formalism, which is well 
known in molecular-vibration theory, in order to 
resolve the spatial orientation of the reference struc- 
ture. As examples, the procedure is applied to cases 
of distortion in tetrahedral ML4 (Td) and octahedral 
ML6 (Oh) molecules. 

0108-7681/92/030245-08506.00 

2. Method 

The first step, which is mandatory in the analysis of 
molecular distortion when the molecular geometry is 
to be described by Cartesian coordinates, is the 
determination of the relative positions of the molecu- 
lar structure to be analyzed and a reference structure: 
generally speaking the relative disposition of the two 
molecular structures may correspond to a distortion 
which is to some extent reducible into rigid rotations 
or translations of the reference structure, and which 
are, in the absence of external fields, not significant 
from a chemical point of  view. 

Within the Cartesian coordinate description, for a 
molecule with N atoms, the molecular distortion, i.e. 
the nuclear displacement from a hypothetical refer- 
ence configuration, is expressed by a vector, D, 
which has 3N components. D represents the distance 
vector between the point defining, in nuclear config- 
uration space, the structure to be analyzed and that 
of the reference structure. This distance is also a 
function of the relative displacements and rotations 
of the two structures. In the second step one of the 
structures, for example the reference one, must be 
moved and rotated in such a way that the vector D 
does not contain any contribution from rigid transla- 
tions or rotations. 

The translation problem is easily resolved by 
making the centers of mass of the two structures 
coincide. The rotation problem is slightly more 
difficult to resolve. 

Let r, (i = 1...N) be the nuclear position vector of 
the structure to be analyzed relative to any molecular 
coordinate system K (X, Y, Z), a coordinate system 
with the origin located at the center of mass of the 
molecule and moving with it, i.e. the vector's posi- 
tion ri remains constant within K. In addition let r~ .~ 
(i = 1 ... N; a - - x ,  y, z) indicate the components of 
the r~'s within K. We also introduce a; (i = 1,..., N), 
the nuclear position vector of the reference structure 
relative to any molecular coordinate system K' (X, Y, 
Z), a coordinate system with the origin located at the 
center of mass of the reference structure, and moving 
with it, and aF (i = 1,..., N; a = x, y, z) indicates the 
components of the vector's position at within K'. 

Translation of the reference structure with respect 
to the structure to be analyzed is such that the 
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centers of mass are coincident, i.e. the two molecular 
coordinate systems K and K' have the same origin. 
Now, the problem is to determine the correct 
orientation between the two structures. 

Let us consider the following three Eckart vectors: 
N 

F~ = E mja;r j  
j = l  

N 

F2 = E m j a f r j  
j = l  

N 

F3 = E mjayry (2 .1 )  
j = l  

where mj is the mass of the j t h  atom. 
The Eckart vectors have a well defined orientation 

within the K molecular frame with components: 
N 

Ff ' = E mja f  rj '~ 
j = l  

N 

F~ = E mj aY r j ~ 
j = l  

N 
F~ = • mia; r~. (2.2) 

j = l  

By symmetrical orthonormalization of the Eckart 
vectors we obtain the unit vectors f~, t"2, and t"3, which 
define the Eckart reference frame: 

3 
f, = X Fyej, i =  1, 2, 3 (2.3) 

j = l  

where eji is the j i t h  element of the matrix E which is 
defined as: 

E = F -1/2 

and F is the Grahm-Schmidt  matrix of the Eckart 
vectors with elements f j :  

f j =  Fi.Fj 

where the dot denotes the inner vector product, and: 
F -  1/2F- 1/2 = F -  1 

where F -  ~ is the inverse of the F matrix. Obviously, 
F -  1/2 (F-  ~) only exists if F is defined as positive, that 
is, the Eckart vectors are linearly independent. 

The unit vectors f~, t"2, 1"3 provide the solution to 
the problem: we merely have to orientate the refer- 
ence structure with respect to the structure to be 
analyzed so that its molecular coordinate system K' 
has the unit vectors X', Y' and Z'  collinear with f~, t"2 
and t"3, respectively, see Fig. 1. Under this condition, 
the nuclear displacement vectors: 

di = r i - a~ 

satisfy the well known Eckart conditions (Eckart, 
1935; Louck & Galbraith, 1976): 

N 

~ m i d  i = 0 (2.4a) 
i 

N 

Z m i a i A d i  = 0 (2.4b) 
i 

where A denotes the external, or cross-vector prod- 
uct. From (2.4a,b) it can be seen that the molecular- 
distortion vector D is free from rigid translations or 
rotations. 

When the reference structure has a point symmetry 
G higher than the real structure, the distortion is 
conveniently analyzed if the vector D is expressed in 
terms of symmetry coordinates related to the point 
group G (Murray-Rust, Biirgi & Dunitz, 1978a). A 
general Cartesian basis Ix(/), y(/), z(/), i = 1,..., N] for 
D spans a representation, F, of the group G which is 
generally reducible: 

r =  Zn~ro (2.5) 
ot 

where ~ d e n o t e s  the direct sum, and F,, is the ~th 
irreducible representation, IR, n,~ times contained in 
F. 

Substituting U, the unitary matrix which operates 
on the Cartesian basis, in (2.5): 

(S1,  $ 2 , . . . ,  S3N ) ~--- [ x ( l ) ,  y(1), z(1),..., x(N), y(N), z(N)]U 

(2.6) 

and the new components of the vector D, the Carte- 
sian symmetry coordinates, are given by: 

S1 X I 

s2 Yl 
$3 Z 1 

= U  - 1  

S 3 N -  2 X N  

S 3 N -  1 YN 
S3N Z N (2.7) 

y" 

/ 

/ v 
K 

x. 

x 

Fig. 1. Orientation of  the structure to be analyzed with respect to 
the reference structure. K is the molecular coordinate system of  
the former and K '  is that o f  the latter. L, t"2, t"3 are unit vectors 
of  the Eckart frame (see text). When x', y', z' are collinear with 
ft, t"2, t"3, respectively, the two structures are not related by rigid 
translations or rotations. 
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U is defined in such a way that three of the coordi- 
nates sr correspond to rigid translation, and another 
three (two for linear molecules) to rigid rotation. 
Therefore, the remaining 3 N - 6 ( 5 )  symmetry coor- 
dinates sy represent real variations of the molecular 
geometry. In this way the problem of redundancy 
encountered with symmetry coordinates relative to 
internal parameters, is avoided. 

Molecular distortions can be analyzed both by 
referring to the molecular static model, i.e. a set of 
nuclei labelled 1,..., N with point masses m~,..., m~ 
placed at positions specified by the vectors ra (i = 1, 
N) (Louck & Galbraith, 1976), as well as by referring 
to the molecular geometrical model, i.e. the set of 
vectors r; relative to the nuclear positions; if we 
consider the former model, we have to use the mass- 
weighted Cartesian coordinates ( x / =  m~i/2xi) in (2.7) 
instead of the Cartesian coordinates (Mezey & 
Maruani, 1990); whereas if we consider the latter 
model we must put me = 1, (i = 1, N), in (2.1). For the 
examples given in the numerical section we will refer 
to the molecular static model. 

Within the symmetry-coordinate description, 
molecular distortions are conveniently analyzed by 
exploiting the expansion: 

n a  

D = Y'. ~'. Droi (2.8) 
a i = l  

where Dr,  is the projection of D into the subspace 
Qroi defined by the components of the basis which 
spans the ith IR of a-type. A fundamental charac- 
teristic of the right-handed terms of (2.8) is that they 
each represent a partial distortion which retains 
some of the determined symmetry element of the 
reference structure. 

Generally, a symmetry distortion Droi will main- 
tain those symmetry elements for which 

R(F~; g )Dr j  = D r j  (2.9) 

holds, where R(F~; g) is the matrix relative to the 
g-element in the F,, IR. It is immediately evident that 
in an arbitrary distortion Droi only those elements 
represented in the IR F,~ by the unit matrix, whose 
character is equal to the dimension of IR F~, will be 
maintained. The symmetry subgroup formed by 
these symmetry elements is an invariant subgroup of 
G, known as the kernel of the IR. 

However, in the case of a degenerate IR, higher 
symmetries than the kemel symmetry can be main- 
tained. These symmetries are called co-kernel 
(epikernel) symmetries (Melvin, 1956), and corre- 
spond to special symmetry distortions, or special 
positions in the multidimensional subspace Qr,. As 
examples, we report in Table 1 the kernel and co- 
kernel symmetries and the related special positions 
for some of the IR's of Td and Oh point groups. As 

Table 1. Symmetry kernels and co-kernels, with 
related special positions, SP, for some of  the multi- 
dimensional irreducible representations, F~, of  the Td 

and Oh point groups 

Co-kernel apex refers to the spatial orientation of the relative 
principal symmetry element, axis or plane, according to the stand- 
ard nomenclature (McWeeny, 1963). For example, in C;~ ~ the 
ternary axis is C; ~, etc. The special positions are given in terms of 
vector components in the two- or three-dimensional spaces rep- 
resenting the F/s  (a and b are real numbers). 

6 
E(T~) 

T~( T.) 

E,(O~) 

T~, ( O ~) 

T,~(O,) 

T~(O~) 

Co-kernel (SP) 
lY2a (I/2a, - 3 ~'2/2a); Dr2d (1/2a,3J/2/2a); lYza (a,O) 
D2 ( a,b ) (Kernel) 
C~,(a,O,O); Q,_(p,a,0); C2,_(0,0,a) 
C;{~(a,a,a); C~U(a,~,~); C~U(~,a,~); C~Z(~,~,a) 
C~(a,b,b); CY/ta,b,-b); C[r(b,a,b); C~Xtb,a,'b); C;7'(b,b,a); 

ClY(b,~,a) 
C,(a,b,c) (Kernel) 
IY~ (1/2a, - 3'/2/2a);/~4h (1/2a,3 ~a/2a);/Y4h (a,0) 
D2h (a,b) (Kernel) 
D~ (a,0,0); DY2h(0,a,0); D~ (0,0,a) 
O]~'(a,a,a); Oj')~(a,fi,~); O~fl(~,a,~); D~'(fi,~,a) 

(a,b,b); C~, (a,b,b); C~(b,a,b); C~.~, (b,a,~); C~ (b,b,a); 
C% ( b,b,a) 

C, (a,b,c) (Kernel) 
C'~, (a,0,0); C-~4~ (0,a,0); C~, (0,0,a) 

x y :  . x ~  - - . "~y~ - - . " ~ z  - - C3, (a,a,a), C3, (a,a,a), C3, (a,a,a), C3~ (a,a,a) 
Q~ (0,a,a); C~, (0,a,fi); C~ (a,0,a); C~I, (a,0,fi); C~ (a,a,0); 

C~,(a,~,0); 
C~(a,b,b); C~(a,b,~); C~(b,a,b); C]'(b,a,~); C~';(b,b,a); 

C~,'(b,~,a) 
C:(O,a,b); C{(a,O,b); C~ (a,b,O) 
C~ (a,b,c) (Kernel) 
/Y'2d (a,0,0); D~u(0,a,0); D:~a(0,0,a) 
D~_:(a,a,a); D~'~(a,~,~); DfYr(~,a,~); D~(~,~,a) 
~ ,  (0,a,a); ~% (0,a,a); C~, (a,0,a); C~, (a,0,a); C~ (a,a,0); 

CT,(a,Z~,O) 
C¢(a,b,b); C~'(a,b,~); C~(b,a,b); C~(b,a,~); C~r(b,b,a); 

C~e(b,~,a) 
C¢(O,a,b); C~(a,O,b); C,(a,b,O) 
C, (a,b,c) (Kernel) 

pointed out by Murray-Rust, Biirgi & Dunitz 
(1978a,b), the description of molecular distortions in 
terms of symmetry coordinates allows us to define 
quantitatively the concept of approximate symmetry, 
or pseudosymmetry, PS. 

If we only consider a few terms in the double sum 
of (2.9), we can obtain a hypothetical structure with 
a symmetry greater than the one observed. We rel%r 
to this symmetry as the approximate symmetry of the 
real structure. 

Generally, the distortion associated with each pos- 
sible approximate symmetry, PSD, will be rep- 
resented by a vector D(PS), given b~¢: 

n a  

D(PS) = Y. ~ Droi(PS) (2.10) 
ot i = l  

where Droi(PS) is the projection of the vector D, the 
total distortion, along the special position associated 
with the epikernel symmetry of lower order contain- 
ing PS as a subgroup. The ratio ]D(PS)]/ID [ can be 
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considered to be a measure of the degreee of 
approximation of the PS symmetry.* 

The molecular configurations associated with the 
hypothetical intermediate symmetries can be 
obtained directly in terms of the distortion with 
respect to the reference configuration, by expressing 
the related vectors D(PS) in the Cartesian basis, with 
a transformation inverse to (2.7). 

Furthermore it can be useful to discuss the 
molecular distortions as a gradual loss of symmetry 
(Cammi, Oleari & Oleari, 1984; Ceulemans, Beyenes 
& Vanquickenborne, 1984; Boca, Breza & Pelikan, 
1989). This hypothetical process of 'descent in sym- 
metry' can be represented by a chain having as 
extremes the symmetry groups of the reference struc- 
ture and the real one, S: 

G-- ,  PS (~) --, . . .--,  PS(m --, S (2.11) 

where PS (° (i = 1,..., N) are the approximate symme- 
tries in decreasing order. Often, it is possible to 
represent the molecular distortion by considering 
alternative descent pathways. Since each approxi- 
mate symmetry can be classified by means of the 
above-defined degree of approximation, the trends of 
such degrees characterize the various pathways. 
Examples of 'descent in symmetry' will be shown in 
the numerical section. 

3 .  A p p l i c a t i o n  t o  ML4 (Ta) a n d  ML6 ( O h )  m o l e c u l e s  

"As examples of applications of molecular-distortion 
analysis using Cartesian symmetry coordinates, we 
have considered distortions in tetrahedral ML4 and 
octahedral ML6 molecules. 

3.1. Symmetry  Cartesian coordinates for  ML4 (Ta) 
and ML6 (Oh) molecules 

The sets of mass-weighted Cartesian displacement 
coordinates in tetrahedral ML4 and octahedral ML6 
molecules form the bases for the following reducible 
representations: 

1-'t(ML4; T a ) =  A l  + E + I"1 + 3T2 (3.1a) 

F t ( M L 6 ;  Oh) = A l g  + Eg + 3 T l .  + T lg  + T2g. 

(3.1b) 

Assuming for the ML4 (Ta) reference molecular 
structure the Cartesian coordinate system and the 
atomic labelling shown in Fig. 2 we have the fol- 
lowing symmetry coordinates: 

* As suggested by a referee, in the case of the Cartesian 
displacement coordinates it is easy to include the e.s.d.'s of  the 
symmetry coordinates and therefore also give a quantitative 
assessment of symmetric configurations within experimental 
e.s.d.'s. 

Sl(A1) = (mL/12)I/2(Xl + Yl + Zl -- X2 - Y2 

+ z2 - x3 + Y3 - z3 + x4 - Y4 -- Z4) 

S2a(E; z 2) = (mL/24)m(x~ + Yl -- 2zl -- x2 -- Y2 

-- 2z2 - x3 + Y3 + 2z3 + x4 -- 24 

+ 224) 

Szb(E;  x 2 - y2) = (mL/g)1/2(XI  _ Yl - x2 + 22 -- X3 

- Y3 - x 4  + Y4) 

S3,,(T~; Rx) = (mL/4)m( --Yl + zl -- Y2 -- z2 + Y3 

+ z3 + Y4 -- z4) 

S3b(T1; Ry) = (mL/4)l/2(Xl -- Zl + X2 + Z2 -- X3 

+ Z 3 --  X4 "+- Z4) 

S3~(T1; Rz) = (mL/4)i/2(-- Xl + Yl + X2 -- Y2 -- X3 

- -  Y3 + X4 + Y4) 

S4.(T=; x) = (mM + 4mL)-1/2[mL(Xl + X2 + X3 

"~- X4) -~- mMXM] 

S4b(T2; y) = (mM + 4mL)-l/2[mL(yl + Y2 + Y3 

+ Y4) + mMYM] 

$4c(T2; z) = (mM + 4mL)-1/E[mL(Z, + Z2 + Z3 

q- Z4) -t- mMZM] 

Ssa(T2; x) = (mM + 4mL)-  l/2(mMmL)-1/2[(Xl 

+ x2 + x3 + x4)/2 - 2XM] 

Ssb(T2; Y) = (mM + 4mL)-  l/2(mMmL)- l/2[(yl 

+ Y2 + Y] + y4)/2 -- 2yM] 

$5c(T2; z) = (mM + 4mL)-  l/2(mMmL)- I/=[(Zl 

+ Z2 + Z3 + Z4)/2 -- 2ZM] 

S6a(T2; x )  = ( m L / 8 ) l / 2 ( y  1 + Zl + Y2 -- Z2 -- Y3 

+ Z3 - -  Y4 - -  Z 4 )  

S r b ( T 2 ;  Y )  = ( m L / 8 ) I / 2 ( X l  + Z 1 + X 2 -- Z2 --  X3 

- z3  - x 4  + z4) 

Src (T2; z) = (mL/8) I /2(XI  + Y l  -- X2 -- Y2 + X3 

- Y3 - x 4  + z4 ) .  ( 3 . 2 )  

One can easily note that the symmetry coordinates $3 
and $4 correspond to rigid rotation and translation, 
respectively. 

Assuming for the ML6 (Oh) reference molecular 
structure the Cartesian reference system and the 
atomic labelling as shown in Fig. 3 we have the 
following symmetry coordinates: 
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SI(AIg  ) = 

S2o(E~; z 2) = 

S 2 ~ ( E , ;  x ~ - y 2 )  = 

S3a( Tlu; x)  = 

S3b( Tlu; Y) = 

S3c(Tlu; Z)= 

S4a(Tlu; x)  = 

S4b( Tlu; Y) = 

S4c( Tlu, z) = 

Ss.(TI.; x) = 

Ssb(TI.; Y) = 

Ssc( TI.;  z) = 

S6a(Tlg; R x ) =  

S6b(Tlg; Ry) = 

S6c(Tlg; R z ) =  

S7a(T2g', x y )  = 

S7b(T2g; X Z ) =  

STc(T2g; y z )  = 

Ss,,[T2,,; x(y 2 -  z2)1 = 

S8b[ T2u; y ( z  2 -  x2)] = 

SsdT2 . ;  z ( x  2 - y2)] = 

(mL/6)l/2(Xl + Y2 -- X3 -- Y4 

- -  Z5 Jr 26) 

( m t J l 2 ) l / e (  - x l  - Y2 Jr x3 Jr Y4 

- 2 z 5  + 2 z 6 )  

(mz/4) l /2(Xl  - Y2 - x3 + Y4) 

(ram + 6mL)-1/2[my2(xl + x2 

Jr x3 Jr x4 Jr x5 Jr x6 ) + mM1/2XM ]1 

(mM + 6mL)-l/2[ml/2(y1 + Y2 

+ Y3 + Y4 + Ys + Y6) +rrlM" I/2.AMj1 

(m~ + 6mL)-1/2[ml/2(Zl + z2 

+ Z 3 J r  Z 4 + Z 5 J r  Z 6 )  "q- ml~/2x~] 

(mm + 6mL)-l/2{[4mzJ(m2 

+ 2mL)]l/Z(x1 + x 3 ) -  [(m~ 

+ 2mL)/411/Z(x2 + X4 + X5 + X6) 

+ [ 4 m M m L / ( m M  + 2mL)]I/2XM} 

( m ~  + 6 m L ) - l / 2 { [ 4 m z J ( m  2 

+ 2mL)]I/2(yl + Y3) -- [(mM 

+ 2mL)/4]l/2(y2 + Y4 Jr Y5 + Y6) 

+ [ 4 m ~ m L / ( m ~  + 2mL)]I/2XM} 

(m~ + 6m/.)-l/2{[4mL/(m2 

+ 2mz.)]1/2(Zl + z3 ) -  [(m,vt 

+ 2mL)/411/2(z2 + z4 + z5 + z6) 

+ [ 4 m M m L / ( m M  + 2mz.)]l /Zx~} 

(ram + 2 m L ) - 1 / 2 [ - ( m ~ / 2 )  1/2 

x (Xl + x3) + (2mL)l /2X~] 

(ram + 2mL)-1/2[--(mM/2)1/2 

X ( Y l  J r  Y3) + (2mL)I/2yM] 

(mM + 2m/.)- 1/2[__ (mM/2)l/2 

x (zl + z3) + (2mL)1/2zM] 

(mtJ4) l /2(  - z2 + z4 - Y5 + Y6) 

(mL/4)1/2(Zl - z3 + x5 - x6) 

(mL/4) I /2 ( - -Y l  + X2 + Y3 -- X4) 

(mL/4)l /2(yl  Jr X2 -- Y3 -- X4) 

(mL/4)1/2(21 - z3 - x5 + x6) 

(mzJ4)l/2(z2 - z4 - Y5 + Y6) 

(mL/4)1/E(x2 + x 4 -  x 5 -  x6) 

( m z J 4 ) l / 2 ( - Y l  - Y3 + Y5 + Y6) 

(mL/4)1/2(Zl - z2 + 23 - z4). 

(3.3) 

In this case one immediately recognizes the symme- 
try coordinates $3 and $5 as the rigid rotation and 
translation, respectively. 

3.2. N u m e r i c a l  resul ts  

We have considered the distorted tetrahedral PO4 
and the octahedral M O 6  ( M  = C d ,  Li, Mn) structural 
unit in LiMnPO4 and Cd2P207 .  LiMnPO4 (Geller & 
Durand, 1960) belongs to the orthorhombic system, 
with space group P n m b  (D~ 6) and four stoichiometric 
units per unit cell. The distorted tetrahedron PO4 
maintains a symmetry plane, coincident with the 
(010) crystallographic plane, the distorted octahe- 

_. 

La ~ b,~ Ya 

J x , 

~ v 

/ /  
x x3 L3 a 

x4 

Fig. 2. ML4 tetrahedral molecule. Principal-axis system and dis- 
placement-axis system. 

z 

./" 

i ~' i . L, i 
-" : z, 

' x,, ', i xa 

i : ,~/ i 

~, ' /  . . . . . . . . . . . . . . . . . . . . . . . . . .  _~L.._t2 . . . . . . . . . . . . . . .  " 

Fig. 3. MLo octahedral molecule. Principal-axis system and dis- 
placement-axis system. 
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dron L i 0 6  maintains only the inversion center, and 
f inal ly Mn06 conserves a symmetry plane, parallel to 
(010). 

Cd2P207 (Calvo & Au, 1969) belongs to the tri- 
clinic system, space group P1, with two molecular 
units in the unit cell. The two tetrahedral clusters, 
which form the pyrophosphate unit, and the CdO6 
octahedron are so strongly distorted that they do not 
have any symmetry element, and belong to the trivial 
symmetry group, C1. 

In all eases the molecular coordinate system K of 
the distorted structures has been assumed to have the 
origin located at the center of mass and to have unit 
vectors X, Y, Z collinear with the crystallographic 
axes a, b and e, respectively (properly orthogonalized 
if necessary). The labelling assumed for the atoms in 
the distorted structures is shown in Fig. 4. The 
molecular coordinate system K' and the atom label- 
ling for the reference structures MO4 (Td) and MO6 
(Oh) is shown in Figs. 2 and 3 respectively. 

The orientation of the reference structures was 
determined by the procedure described in the pre- 

ceeding section, assuming an arbitrary initial bond- 
ing distance of M--O.  The orientation of the 
reference structures M04 (Td) and MO6 (Oh) does 
not depend on this structural parameter. 

The Cartesian displacement coordinates were then 
calculated with respect to the molceular coordinate 
system K', and the corresponding symmetry coordi- 
nate was obtained via (3.2) and (3.3), for MO4 (Td) 
and MO6 (Oh) respectively. 

The definitive bonding distance M---O of the refer- 
ence structures MO4 (Td) and MO6 (Oh) was 
determined by setting the totally symmetric distor- 
tion coordinate Si = 0; this choice is merely equiva- 
lent to minimizing the distortion between the 
reference structure and the structure to be analyzed. 
The calculations were executed by a FORTRAN 
program which is available upon request from the 
authors (Cammi & Cavalli, 1990). 

3.2.1. Tetrahedral POafragments. The main features 
of the reference tetrahedra, i.e. bonding distances 
and spatial orientations, are reported in Table 2. The 
corresponding values of the symmetry coordinates 
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Table 2. P---O distance (A) and orientation o f  the P O 4  

reference tetrahedron in C d 2 P 2 0 7  and LiMnPO4 

The orientation is given in terms of direction cosines between the 
molecular coordinate system K" (see Fig. 2) and the crystallo- 
graphic axes a, b, e. 

CdzP~O7 LiMnPo, 
PO,(1) PO,(2) P04 

P---O 1.537 1.541 1.540 

a b c a b c a b c 

X 0.922 -0 .261 - 0.359 -0 .054  0.930 0.271 -0 .423  - 0.707 - 0.567 
Y 0.332 0.856 0.244 0.926 0.051 -0 .060  0.801 0 .000-0 .699  
Z -0 .199  -0 .447  0.901 -0 .373  -0 .364  -0.961 0.423 -0 .707  0.567 

Table 5. M---O distance (A) and orientation o f  the 
MO4 reference tetrahedron in Cd2P207 and LiMnPO4 

The orientation is given in terms of direction cosines between the 
molecular coordinate system K' (see Fig. 2) and the crystallo- 
graphic axes a, b, e. 

Cd2PzO7 LiMnPo~ 
P04(1) P04(2) PO, 

M - - O  1.540 1.537 1.541 

a b c a b c a b c 
X - 0 . 9 8 7 - 0 . 0 0 8  0.507 0.824 0.000 0.566 0 .832-0 .019 0.555 
Y 0.072-0.091 0 . 8 6 0 - 0 . 4 0 0 - 0 . 7 0 7  0 .583-0 .367 0.731 0.575 
Z - 0 . 1 4 2 - 0 . 9 8 2 - 0 . 0 6 8 - 0 . 4 0 0  0.707 0 . 5 8 3 - 0 . 4 1 6 - 0 . 6 8 2  0.601 

Table 3. Distortion symmetry coordinates (A x 
a.u.~/2) for PO4fragments in Cd2P207 and LiMnPO4 

Cd2P207 L i M n P 0 4  
a 0 4 ( l )  P04 (2 )  a 0 4  

S,,(E; z 2) - O. 172 - 0.261 - 0.039 
S2~(E; x ~ - y2) 0.099 - 0.353 - 0.068 
S~(T2; x) 0.415 0.115 0.125 
$5~(T2; y) - 0.230 0.163 0.215 
$5~(T2; z) - 0.409 0.147 - 0.125 
S~(7"2; x) 0.077 0.104 - 0.206 
S~(T~; y) 0.218 0.123 -0 .213  
S~(T~; z) O. 107 - 0.140 0.206 

Table 4. Approximation values o f  the intermediate 
symmetries in the fragments PO4(1) and PO4(2) of  

Cd2P207 and PO4 of  LiMnPO4 

Cd2P207 L i M n P O 4  
P 0 4 ( I )  P 0 4 ( 2 )  P 0 4  

C~ ~ 0.926 0.494 0.539 
C~ ~ 0.736 0.674 0.976 
C~ ~ 0.941 0.935 1.000 
C~  0.485 0.944 0.654 
C, r~ 0.679 0.650 0.976 
C~ ~ 0.967 0.684 0.539 
C~  0.646 0.554 0.521 
~ 0.450 0.880 0.654 
C2~ 0.649 0.490 0.521 
C ~  ~ 0.377 0.457 0.378 
Cj'~ 0.887 0.242 0.252 
C ~  0.195 0.197 0.378 
C ~  ~ 0.511 0.411 0.973 
/Y'2a 0.244 0.476 O. 170 
/9~ 0.006 0.797 0.085 
/Y2d 0.244 0.320 0.085 
D 2  0.282 0.804 0.170 

for the distorted tetrahedra are shown in Table 3. 
The degrees of approximation for the possible inter- 
mediate symmetries, ID(PS)I/IOI, are reported in 
Table 4. 

In the PO4(I) tetrahedra of Cd2P207 and the PO4 
tetrahedra of LiMnPO4, the distortion is clearly 
trigonal. In the former, where the real symmetry is 
C~, the distortion occurs along the ternary axis C~Y~: 
the associated symmetry, C;~ ~, shows a good degree 
of approximation (0.88) and the three symmetry 
planes associated with it, Cs ~y, C~ x and C~ have 

approximation values of 0.93, 0.94 and 0.97, respec- 
tively. 

In accordance with this, the distortion in this case 
can be represented by three 'descent in symmetry' 
pathways: 

_ _  

7, _ ,-,xyz__, CU---, Cl 
• d - ' ' ~  ~ - ' 3 v  

_ _  

Ta "-~ C~ yz'-~ C] x--" C1 

Ta--" r ~ - -  C ~ - - "  - -  

In the P O 4  unit of LiMnPO4, with Cs as the real 
symmetry, the distortion occurs along the C~ yz axis, 
and the relative point group ,--3vc'~Yz has a higher 
approximation value (0.97) than the above case. 
Also, one of the symmetry planes (o -z~) is maintained 
in the final structure. The best symmetry descent 
path is obviously the following: 

_ _  

T d  ... ~ g - ,  x y z  ._.> "-'3 v CZX.  

For the PO4(2) unit of Cd2P207, with C~ as the 
real symmetry, the distortion occurs along the binary 
axis C~'. Here, we have the groups DY2d, C~, C~ :~ and 
C] ~ with approximation values of 0.80, 0.88, 0.94 
and 0.94, respectively. Consequently, the following 
two symmetry descent pathways are almost 
equivalent: 

Td--* DV2d---, C~ --, CfX-.. Cl 

Ta'-" DYaa--* C ~ - "  C z~--* Cl. 

3.2.2. Octahedral MO6 (M = Cd, Li, M n ) f r a g -  
ments. The bonding distance M---O and the spatial 
orientation of the reference octahedra are reported in 
Table 5. The values of the Cartesian symmetry coor- 
dinates for the three cases are shown in Table 6, and 
the approximation values of the intermediate symme- 
tries are shown in Table 7. 

In the CdO6 group, which has only trivial C~ 
symmetry, a predominant pseudosymmetry is not 
observed; however, several pseudosymmetries of 
immediately higher order than C~ have rather close 
approximation values, in any case larger than 0.80: 
C ] (0.85), C~ z (0.86), C~ x (0.86), C] ~ (0.84), C xy 
(0.83). Clearly the related pathways for the descent in 
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Table 6. Distortion symmetry coordinates (A × 
a .u .  1/2) for  MO6 octahedral fragments in C d 2 P 2 0 7  and 

L i M n P 0 4  

Cd2P207 LiMnP04 
CdO6 LiO6 MnO6 

$2~ (Eg;Iz 2 ) -0.171 0.542 -0.098 
S2b(Eg; x 2 -)2) -0.184 0.177 0.100 
$7~(T2~; xy) 1.749 2.880 - 0.777 
STb(T2g; zx) - 1.086 - 0.900 - 0.777 
S7¢(T2g;yz) -0.263 -0.121 -0.112 
S4~( T~,; x) - 0.625 0.000 0.634 
S4b(T~,; y) 2.000 0.000 - 1.404 
S4¢(T~,; z) -0.455 0.000 - 1.404 
Sso(T~; x) 0.043 0.000 0.221 
Ssb(T~; y) 0.032 0.000 -0.341 
Ss¢(T~,; z) 0.127 0.000 -0.341 
Ssa[ T2u; x(Y 2 - z2)] 0.346 0.000 0.000 
Ss6[ T2,,; y ( g 2  --  X2)] 0.150 0.000 1.930 
SsdT2~; z(x 2 - )2)1 - 1.741 0.000 - 1.930 

Table 7. Intermediate symmetries with approximation 
values (in parentheses) greater than 1/'k,/2 in C d O 6  in 

Cd2P207 and LiO6, MnO6 in LiMnPO4 

Cd06 
C~ (0.753) 
Cff (0.784) 
Cff (0.841) 
Cff (0.825) 
Cff (0.753) 
C~ 'y (0.767) 
Cff (0.768) 
c~ ~ (0.858) 
c~ ~ (0.864) 
Cj' (0.778) 
C~ (0.848) 

LiMnP04 
LiO6 MnO6 

D~ ~ (0.733) ~2~ (0.922) 
D:w, (0.954) 
C~ (0.970) 
C~ (0.982) 
C~, (0.762) 
C:~ (0.712) 
L'v2~ (0.871 ) 

symmetry are almost equivalent. As an example, we 
report only three of the most significant ones: 

Oh--" C ~ - ,  C y - ,  CI 

Oh-" C ~ - ,  Cff -o C1. 

In the LiO6 unit, with Ci as the-real symmetry, the 
predominant distortion is along the z axis: the OZ2h 

pseudosymmetry and its subgroups CEXh y and C~'h y 
have considerable approximation values, 0.95, 0.97 
and 0.98, respectively. Thus, the best symmetry des- 
cents are: 

Oh "-~ DZ2h --> C~fi v --> Ci 

Oh -" D~Eh -" C~ y --" Ci. 

Finally, in MnO6, where the real symmetry is Cs, 
the distortion develops along the binary axis defining 

the Q'~ pseudosymmetry, with an approximation 
value of 0.92. Therefore we have: 

Oh ~Cf ,~oC~ z. 

4. Concluding remarks 

We have proposed a general procedure for 
molecular-distortion analysis using Cartesian sym- 
metry coordinates. Characteristics of the method are: 

(i) The explicit definition of the spatial disposition 
of the reference structure with respect to the struc- 
ture to be analyzed in terms of the Eckart frame. 

(ii) The direct use of the 3 N -  6(5) Cartesian sym- 
metry coordinates to describe the real variation of 
the molecular structure, avoiding the redundancy 
problem one can encounter by using symmetry coor- 
dinates related to the internal geometrical param- 
eters, i.e. bond distances and angles. The method has 
been applied to the cases of M L 4  (Td)  and M L  6 (Oh)  
type molecules. 
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